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We assume the problem of determining the base pressure behind a 
step in the presence of turbulent mixing, with and without allowance 
for the initial boundary-layer thickness, in a plane-parallel supersonic 
stream. A comparative estimate of base pressure is made with various 
boundary conditions for open and closed stagnant zones, 

A scheme for calculating the base pressure  of a 
compress ible  gas behind a step has been formulated 
by Korst  [1], based on the TolImien problem of mixing 
of a semi-infinite jet with a gas at res t  occupying a 
half-space.  To determine the velocity profile, Korst ,  
assuming the flow in the mixing layer  to be self- 
s imilar ,  used the solution of the approximate para-  
bolic equation of motion in the boundary layer  
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and to determine the circulation in the stagnant zone--  
the condition of branching in the junction region of the 
separated flow (Korst-Chapman conditions): the total 
p ressu re  P0j on the branch line is equal to P4a in the 
zero-gradient  part  of the flow behind the oblique 
shock. 

As has been shown by Nash [2], the attachment 
p res su re ,  and correspondingly the total p ressu re  on 
the branch line, are not equal to the maximum static 
p ressu re  real ized upon attachment of the separated 
zero-gradient  par t  of the s t ream,  but are considerably 
smaller .  Moreover ,  the initial boundary layer at the 
point of separation of the oncoming s t ream has a con- 
siderable influence on the value of the base pressure .  

The present  article gives the resul ts  of calcula-  
tions of base p res su re  during turbulent mixing of a 
plane s t ream behind a projection for the "exact" 
equation of motion 
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with Pr  T = 1 and To = const. Solution of the equations 
of turbulent mixing without allowance for initial 
boundary-layer  thickness simplifies the problem 
appreciably and allows a comparatively simple de- 
termination of the influence of mass flow rate of the 
gas issuing from the base region, and of the influence 
of the quantities • = Cp/Cv and ~ (~ is a parameter  
describing the propagation of turbulence in the mixing 
zone) on the magnitude and nature of the change of 
base pressure .  As initial parameters  we used the 
results  of calculations of se l f -s imi lar  turbulent mix- 
ing behind a step of a semi-infinite jet and a motion- 
less gas [3]. 

Flow model: To calculate the base p ressure  behind 
a step we assumed the following flow model of a plane 
s t ream with four character is t ic  regions (Fig. 1): 
region of uniform approaching s t ream (1), region of 
deflected uniform s t ream,  i. e . ,  Prandtl-lVieyer flow 
(2), region of separated flow with adjoining turbulent 
mixing zone (3), and region of attachment of separated 
s t ream with an isentropic p ressure  increase (4). 

In accordance with the Korst-Chapman hypothesis, 
it has been assumed that the streamline dividing the 
circulating mass  in the stagnant zone and the external 
s t ream is character ized by a total p ressure  equal to 
the static pressure  in the pressure  increase region 
(P0j = P4a) .  

Determination of base p ressure  for  a closed stag- 
nant zone. 1. No allowance for initial boundary layer 
thickness. We shall denote by uj and P0j, respectively,  
the velocity component and the total p ressu re  on the 
branch line; then 
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Fig. 1. Flow model of a plane s t ream behind a step with the 
boundary conditions of the Tollrnien (a) and Dern'yanov-Shmanenkov 
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w h e r e  Ma~ = Maa I --U/. 
A s s u m i n g  that  at the end of the s e p a r a t e d  zone the 

s t a t i c  p r e s s u r e  of the oncoming s t r e a m  P4a li P*a is  
ach ieved ,  we obta in  a s imp le  a p p r o x i m a t e  so lu t ion  for  
d e t e r m i n i n g  the b a s e  p r e s s u r e  

Pb,'P,o = = (<o / V ) / = (2) 

Values  of d i m e n s i o n l e s s  ve loc i t y  ~j a r e  d e t e r m i n e d  
a c c o r d i n g  to [3] as  a function of the C r o c c o  number  
Cr3a fo r  the boundary  condi t ions  of the  T o l l m i e n  and 
De m 'yanov -Shmanenkov  p r o b l e m s .  The r e s u l t s  of the 
ca l cu l a t i ons  a r e  shown in Fig .  2, as  a r e  c a l c u l a t e d  
v a l u e s  of b a s e  p r e s s u r e  ob ta ined  us ing  the s e m i -  
e m p i r i c a l  r e l a t i o n  P0j = 0 . 3 5 ( P l a  - Pb) + Pb ,  p r o -  
posed  by Nash [2]. 

The d i f fe ren t  boundary  condi t ions  in the tu rbu len t  
mix ing  zone (see Fig .  1 and [3]) fo r  the  T o l l m i e n  and 
De m 'yanov -Shmanenkov  p r o b l e m s  lead  to d i f fe ren t  
v e l o c i t y  p r o f i l e s  in the mix ing  zone. The boundary  
condi t ions  of the Dem yanov-Shmanenkov  p r o b l e m  give 
a ve loc i t y  p r o f i l e  with s m a l l e r  ~j on the  b r anch  l ine  
than in the  T o l l m i e n  boundary  p r o b l e m .  

2. Al lowance  for  in i t i a l  boundary  l a y e r  t h i cknes s .  
The in i t i a l  boundary  I a y e r  t h i c k n e s s  at  the s e p a r a t i o n  
point  p r o v e s  to have a subs t an t i a l  inf luence on the 
t u rbu len t  mix ing  zone. T h e r e  is  an in i t i a l  s ec t ion  of 
the t u rbu len t  mix ing  zone (x - x , )  in which t h e r e  is  
s t i l l  no s e l f - s i m i l a r i t y  of the ve loc i ty  p ro f i l e .  The 
a b s e n c e  of s e l f = s i m i l a r i t y  l e a d s  to a change in the 
va lue  of u i = F ' F =  0 . A d e t e r m i n a t i o n  was  m a d e  in [3] 
of  the inf luence  of m o m e n t u m  t h i c k n e s s  52"*/x of the :y 
bounda ry  l a y e r  on the quant i ty  ~j = F '  F=0 at  v a r i o u s  
Crocc0  n u m b e r s  Cr  3 a for  the  T o l l m i e n  bounda ry  p r o b -  

l e m .  With the Nash  [2] r e l a t i o n  P0j  = 0.35 {Pla - 
- Pb) + Pb and the r e l a t i on  

•  , 77~-"I 
P b = i -- ~7 | 

Phi • + 1 J 
(3) 

we find kj on the b r anch  l ine ,  a f t e r  ass igzdng t:~/:Pia~ 
fo r  g iven va lues  of M~a and ~ .  F r o m  the r e l a t i o n  

Pb/P,~ = n (k~)/n (k;~:} (4) 
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Fig .  2. Dependence  of r e l a t i v e  b a s e  p r e s s u r e  
P b / P  m on Mla  with ~ = 1.4 (a) and 1.2 (b) fo r  
bounda ry  condi t ions  of the  T o l l m i e n  p r o b l e m  in 
the  K o r s t  so lu t ion  (1), and the Nei land so lu t ion  
(2), of the D e m ' y a n o v - S h m a n e n k o v  p r o b l e m  (3) 
and the T o l l m i e n  p r o b l e m s  in the Nei land s o l u -  
t ion with the Nash  condi t ion  P0j = 0 .35(Pla  - -  

- -  P b )  + P b  ( 4 ) .  

we d e t e r m i n e  F'F=-o = Xj/~.3a. A spec i f i c  va lue  of 
52"*/x at  the beginning  of the mix ing  zone c o r r e s p o n d s  
to the va lues  of F ' F =  0 and Craa  found. To d e t e r m i n e  
the in i t ia l  b o u n d a r y - l a y e r  m o m e n t u m  t h i c k n e s s  at  the  
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Fig.  3. Dependence  of r e l a t i v e  b a s e  p r e s s u r e  I :%/P,~ on 
th( the  i n i t i a l  b o u n d a r y - l a y e r  m o m e n t u m  t h i c k n e s s  51**h 

sel at  the  s e p a r a t i o n  point ,  with Mla = 2 (A) and (B), ~ = 1.4: 
1) a c c o r d i n g  to Nash  [2]; 2) a c c o r d i n g  to o u r  ca l cu l a t i on ;  

a,  b ,  c) e x p e r i m e n t a l  da t a  of  v a r i o u s  au tho r s  [ 2 ] .  
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separa t ion  point up to turning of the s t r e a m ,  the r e l a -  
t ion p roposed  by Nash [2] was used:  

�9 = MIJM ~ . (5) 

The resu l t s  of the calculat ions are  shown in Fig. 3. 
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Fig. 4. Dependence of re la t ive  base  p r e s s u r e  Pb/Pia 
on d imens ion less  flow ra t e  H of gas,  with Mla = 2 .76 ,  

= 1 .2 ,  fo r  boundary conditions of the Dem'yanov-  
Shmanenkov prob lem (1), the Tol lmien  problem in 
the Neiland solution (2), and in the Kors t  solution (3): 

a) with o- = 12 + 2. 5783a; b) with (r = 12. 

Determinat ion  of baae pressure for an open s tag-  
naut zone without al lowance fo r  initial boundary layer 
thickness. The base  p r e s s u r e  for  an open stagnant  
zone was  de te rmined  with the same  conditions as for  
the c losed  stagnant  zone. Following Kors t  [1] we shall  
denote by H = Qd/Q~a the d imens ion less  flow ra te  of 
gas ,  where  Qd = ~P3a 1/r x ,  U3a F is  the m a s s  flow ra te  

of gas  p e r  second,  and Q[~ 1/T--~a h is the 

re la t ive  m a s s  flow ra te  pe r  second of the oncoming 
s t ream.  Then 

P 3 a  ~ T ~ l a  I M~ F. (6) 
Pol~tT3o o sinO b 

Notation 

u, v--longitudinal  and t r a n s v e r s e  veloci ty  c o m -  
ponents;  x, y-- longitudinal  and t r a n s v e r s e  coord ina tes ;  
T0--stagnation t empe ra tu r e ;  Pb- -base  p r e s s u r e ;  
P ia - - s t a t i c  p r e s s u r e ;  Pia--densi ty;  Mia--Mach number  
of s t r e a m  (i = 1, 2, 3, 4), the number  subscr ip t  indi- 
ca tes  the region,  the subscr ip t  a that  the quantity 
belongs to the ze ro -g rad i en t  pa r t  of the s t r e am ;  F--  
a quantity propor t iona l  to the s t r e a m  function; P0j, 
F'I~_ 0 = ~j = uj /U3a--respect ively ,  total  p r e s s u r e  and 
d imens ionless  longitudinal veloci ty  on the b ranch  line; 
x , - - m i x i n g  length; Xia--velocity coefficient;  Aj--velo- 
city coefficient  on the b ranch  line; 61"*, 52**--initial 
bounda ry - l aye r  momentum thickness  cor respond ing  
to deflection and af ter  deflect ion of the flow; O b -  
turning angle of the s t r e a m  on pass ing  through the 
shock; h--height  of step;  R--gas  constant ;  

Cr z=l  1-] ~--I M ~ 
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